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ABSTRACT: Precise and efficient detection 

techniques are badly needed, as lung cancer 

remains one of the leading causes of cancer-

related deaths worldwide. The manual 

interpretation of medical imagery, which is 

time-consuming and prone to human mistake, 

is often the foundation of conventional 

diagnosis procedures. The purpose of this 

project is to use deep learning and image 

recognition to develop an automated and 

dependable method for the early detection of 

lung cancer. In medical image processing 

applications, deep learning techniques 

particularly Convolutional Neural Networks 

(CNNs) and Residual Networks (ResNets) have 

shown promising results recently. This article 

proposes a novel architecture-based lung 

cancer diagnostic technique based on CNN and 

ResNet-50. The suggested approach makes use 

of deep learning algorithms' innate capacity to 

automatically identify relevant information 

from medical pictures, such CT scans of the 

lungs. CNN and ResNet-50 models are 

designed and trained after preprocessing 

techniques are used to improve the clarity and 

quality of input images. We trained both the 

models and then evaluated using various 

performance metrics, including accuracy and 

loss. After evaluating the model's performance, 

we observed that CNN outperformed than other  

 

model and has been shown to be promising 

compared to traditional methods. 
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LITERATURE REVIEW: 

In an effort to support early lung cancer 

detection, the research investigates different 

computational strategies for the segmentation, 

classification, and identification of lung 

nodules. It covers a wide range of approaches, 

including ISHAP-based classification, neuro-

evolutional approaches, and deep convolutional 

neural networks (CNN, DDRN, and U-Net) [5]. 

The primary contribution of this work is the 

suggestion of an altered U-Net-based method 

for nodule detection and lobe segmentation in 

the classification of lung cancer [6]. Using this 

updated architecture improves the 

segmentation model's efficacy and streamlines 

the training, validation, and testing processes. 

Better results are obtained when the updated U-

Net architecture for nodule detection is 

combined with the suggested candidate nodule 

extraction model [2]. Furthermore, the paper 

suggests a model that uses SVM and AlexNet 

[3] to classify lung cancer, It divides lung 

nodules more accurately and effectively into 

carcinogenic and non-cancerous categories. 

The literature review, methods, findings, 

discussion, conclusion, and future work are all 



825                                                        JNAO Vol. 15, Issue. 1 : 2024 
covered in the sections that make up the paper's 

structure. 

 

INTRODUCTION: 

Lung cancer's importance as a hazard to world 

health, including information on its etiology, 

clinical manifestations, diagnosis techniques, 

and evaluation protocols [7]. Lung cancer is a 

major cause of cancer-related deaths globally, 

accounting for 2.2 million new cases yearly. It 

is mostly caused by smoking and exposure to 

toxins. It is common for symptoms like weight 

loss, chest pain, and coughing to appear later in 

the disease, delaying diagnosis. Imaging 

studies [1], tissue samples, and molecular 

profiling are commonly used in the diagnosis 

process. Lung cancer can sometimes be 

discovered by accident during unrelated 

imaging. In order to enhance treatment results 

and patient survival rates, frequent screenings 

and timely assessment of symptoms are 

prioritized. 

 

PROPOSED METHODS:     

CNN  

In specifically, computer vision uses 

convolutional neural networks (CNNs) to 

handle structured grid data such as photos. 

Computer vision is revolutionized by CNNs, 

which allow for automatic feature extraction 

and hierarchical learning from raw pixel values. 

Information integration, down sampling, and 

local feature extraction are made easier by the 

convolutional, pooling, and fully linked layers 

that make up CNN architecture. Creating 

suitable architectures, optimizing loss 

functions, and preparing medical pictures are 

all necessary steps in training CNNs to identify 

lung cancer. In medical image processing, 

CNNs are useful tools for a range of imaging 

modalities and clinical scenarios because of 

their exceptional performance in deciphering 

complicated patterns in medical imaging, 

identifying malignant tissues, and detecting 

minute aberrations. 

 

RESNET-50 

He and colleagues proposed the ResNet, a deep 

learning architecture that uses residual 

connections to overcome the difficulty of 

training very deep neural networks, in 2015. By 

allowing data from lower layers to flow directly 

into higher layers, ResNet mitigates the issue of 

disappearing gradients and makes it possible to 

train deeper networks with better gradient flow 

and feature reuse. ResNet provides benefits in 

the diagnosis of lung cancer by deriving 

intricate information from medical imaging 

data and perhaps identifying minute anomalies 

suggestive of lung cancer. ResNet outperforms 

conventional CNN topologies in lung cancer 

diagnosis, according to experimental data. All 

things considered, CNNs including variants 

like ResNet are effective instruments for 

identifying lung cancer in medical imaging, 

allowing for accurate detection and an early 

diagnosis for improved patient outcomes. 

 

METHODOLOGY 

I. Data Collection and Preprocessing: Data 

Collection 

Data Sources: The main sources of 

information for the diagnosis of lung cancer are 

medical imaging tests, such as CT scans [1] and 

X-rays, which are gathered from publicly 

accessible databases, academic institutions, and 

hospitals. Annotated lung nodule data, which 

are essential for training and assessment, are 

provided by the LIDC-IDRI dataset. 

Annotation: Expert radiologists annotate 

images to identify abnormalities or nodules, 

providing information about the location, size, 

shape, and probability of malignancy of each 

place. The training and assessment of 

algorithms for the detection of lung cancer 

depends on these annotations.  

Data Augmentation: Rotation, scaling, 

flipping, and translation are common data 

augmentation strategies used to improve 

dataset diversity in the face of insufficient data. 

By doing this, machine learning models trained 

on medical imaging datasets become more 

robust. 

The LIDC-IDRI dataset is divided into three 

cases that are Benign(non-cancerous), 

Malignant(cancerous), Normal. 

 
fig(a)-Benign, fig(b)-Malignant, fig(c)-Normal 
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Data Preprocessing 

Image loading: Using libraries such as 

Pydicom or OpenCV, load X-ray or CT scan 

images of the lungs, making sure the format is 

suitable for further processing. 

Re-sizing: To enable effective CNN model 

training and inference, standardize image 

dimensions. 

Normalization: To hasten convergence and 

stabilize the training process, align pixel values 

to a standard scale (e.g., [0, 1] or [-1, 1]). 

Noise Reduction: Use Gaussian blurring or 

denoising filters to reduce extraneous features 

in your images to improve their quality. 

Segmentation:           

Use methods like thresholding or deep 

learning-based segmentation to isolate lung 

areas from the background so that the model 

can concentrate on pertinent characteristics. 

Nodule Detection: Train a different neural 

network with the goal of detecting nodules, or 

use standard image processing techniques to 

automatically identify nodules. 

Data splitting: Using a split ratio of, say, 70-

15-15, divide the dataset into training, 

validation, and testing sets. 

Label Encoding: Convert category labels into 

numerical representations that the CNN model 

may be trained with, such as benign and 

malignant. 

CNN Architecture and Training Procedure: 

By adapting its design to effectively extract 

relevant information from medical imaging 

data, such as CT or chest X-rays, convolutional 

neural networks (CNNs) are utilized to identify 

lung cancer. Below is a detailed explanation of 

a typical CNN design for lung cancer detection: 

Input Layer:  

The dimensions of the input images dictate the 

size of the CNN's input, which is medical 

imaging data that is often shown as 2D (for X-

rays) or 3D (for CT scans) arrays of pixel 

values. 

Convolutional Layers:  

Using a series of filters to iteratively scan the 

input data, convolutional layers extract features 

from input photos and identify different 

structures, such as masses or nodules, that may 

be signs of lung cancer. The intricacy of the 

task and the dimensions of the input image 

determine the number and size of filters. 

Activation Function:  

After each convolutional operation, an 

activation function such as ReLU is applied 

element-wise to add non-linearity into the 

network and enable complex relationship 

learning within the data. 

 

 
Activation Function: After each convolutional 

operation, an activation function such as ReLU 

is applied element-wise to add non-linearity 

into the network and enable complex 

relationship learning within the data. 

Pooling layers: Especially "max pooling," 

conserve maximum values within pooling 

regions, reducing the spatial dimensions of 

feature maps while preserving essential 

information. This helps reduce computational 

complexity and overfitting. 
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Fully Connected Layers: Based on derived 

features, one or more fully connected layers 

receive flattened feature vectors and use high-

level reasoning and decision-making to classify 

input images as suggestive or non-indicative of 

lung cancer. 

Output Layer: The output layer is typically 

made up of a single neuron with a sigmoid 

activation function that provides a probability 

indicating whether lung cancer is present in the 

input image. 

TRAI PROCEDURE: 

Gathering and Preparing Data: 

Make a tagged dataset of CT or X-ray pictures 

of the chest that shows the presence or absence 

of lung cancer. For consistency and quality, 

preprocess photos using augmentation, 

normalization, and resizing, if necessary. 

Dividing the Collections: 

Make training, validation, and test sets out of 

the dataset. Utilizing the training set, tune the 

hyperparameters and monitor the results with 

the validation set, train the CNN. Test the 

model's ultimate performance with the test set. 

Starting Point:Set the starting parameters of 

the CNN Architecture, usually using random 

initialization or pre-trained weights. 

Forward Propogation: 

Using the CNN, forward propagate training 

images to acquire probabilities for each image. 

Compute Loss: 

Compute loss by comparing projected 

probabilities with ground truth labels using an 

appropriate function, such as binary cross-

entropy. 

Repropagation in reverse: 

Using backpropagation, update the CNN 

parameters while minimizing loss by utilizing 

optimization approaches such as Adam, 

RMSprop, or SGD. Periodically assess model 

performance on the validation set, computing 

metrics like accuracy, sensitivity, specificity, 

and AUC, in order to keep an eye on 

generalization and identify overfitting. 

Validation: 

Hyperparameters like learning rate, batch size, 

epochs, and model architecture should be 

adjusted in response to validation results. 

Adjusting Hyperparameters: 

To improve model performance, iterate training 

over a number of epochs while keeping an eye 

on convergence and avoiding overfitting. 

Iteration of Training: 

Evaluate the final model's performance on the 

test set by computing measures such as 

accuracy, sensitivity, specificity, and AUC to 

see how well it detects lung cancer in the real 

world. 

Testing: 

Use the trained CNN model to evaluate fresh 

medical imaging data in order to support the 

early detection and diagnosis of lung cancer. 

Model Implementation: 

By utilizing deep learning to enhance patient 

outcomes and promote early intervention, these 

procedures facilitate the effective training of 

CNN architectures for the diagnosis of lung 

cancer. 

 

I. RESNET-50Architecture and Training 

Procedure: 

The ResNet50 architecture and its components 

for lung cancer detection are explained in detail 

below: 

Input Layer: Takes lung pictures and modifies 

their dimensions to fit the image sizes in the 

dataset. 

Convolutional Layers: 

Batch normalization layers and ReLU 

activation functions come after convolutional 

layers in ResNet50. These layers use several 

repetitions to extract hierarchical features from 

the input pictures. In order to discern between 

malignant and non-malignant regions in lung 

pictures, each convolutional layer uses filters to 

recognize forms, edges, and textures. 

Residual Blocks: The design of ResNet50 is 

based on residual blocks, which are made up of 

several convolutional layers connected by skip 

connections. Deep network training is made 

easier by these links, which support gradient 

flow. In order to promote "residual learning" 

and allow the network to learn identity 

mappings by predicting attribute differences, 

each block adds the input to the output prior to 

activation. 

Pooling Layers: After convolutional layers, 

ResNet50 uses max-pooling layers to 

downsample feature maps and minimize spatial 

dimensionality. This lowers computing costs 

and avoids overfitting while assisting in the 

capture of important characteristics. 

Fully Connected Layers: Convolutional and 

pooling layers in ResNet50 capture spatial 
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properties, which are then flattened and fed into 

fully connected layers toward the network's 

finish. These layers, which are in charge of 

high-level representations, carry out the last 

classification to ascertain whether lung cancer 

is present or not. 

Resulting Layer: A single neuron with a 

sigmoid activation function makes up the 

output layer of ResNet50. Based on the input 

image, this neuron generates a probability score 

that represents the possibility of lung cancer. 

Binary predictions (malignant or non-

cancerous) are enabled by setting a threshold 

for this score. 

 

Training Procedure:  

Training Process: Gradient descent and 

backpropagation are used to train ResNet50 

using labeled lung pictures in order to reduce 

loss. Performance can be optimized by 

adjusting hyperparameters, and convergence 

can be aided by transfer learning with pre-

trained weights. Early diagnosis and treatment 

planning are aided by the accurate detection of 

malignant spots in lung scans by a well-trained 

ResNet50 model. 

Gathering and Preparing Data: 

Compile a large dataset of lung pictures, 

including samples from cancer-free and cancer-

ridden people, together with labels indicating 

the presence of cancer. To guarantee 

consistency in size, resolution, and orientation, 

preprocess the photos. Model diversity and 

generalization are improved by methods 

including augmentation, normalization, and 

scaling. 

Splitting a dataset: 

Divide the dataset into subsets for testing, 

validation, and training. Usually, training uses 

about 70–80% of the data, validation uses about 

10-15%, and testing uses the remaining 10-

15%.  

ResNet50 Model Architecture: 

ResNet50 solves the vanishing gradient issue 

and makes training very deep networks easier 

by having 50 layers, all of which are residual 

blocks. Convolutional layers, batch 

normalization layers, pooling layers, and 

activation functions such as ReLU are also part 

of the design. The first layer's input size is 

modified to better fit the dataset's lung image 

dimensions. 

Starting Point: Set the ResNet50 network's 

weights initially using pre-trained weights or at 

random. Before fine-tuning on the lung cancer 

dataset, pre-training on a sizable dataset like as 

ImageNet can aid in the acquisition of valuable 

features. 

Loss Mechanism: For binary classification 

problems like lung cancer diagnosis, use a 

suitable loss function. The widely used binary 

cross-entropy loss quantifies the difference 

between the true labels and the projected 

probability. 

Optimizer: Choose an optimizer to minimize 

the selected loss function, such as SGD or 

Adam. The flexible learning rate characteristics 

of the Adam optimizer make it a popular 

choice. 

Loop of Training: Batch-iterate through the 

training dataset, computing loss and forward 

propagating input before updating weights 

using backpropagation. To identify overfitting, 

periodically validate the model's performance 

using the validation dataset. For convergence, 

modify the learning rate in response to 

validation outcomes. 

Adjusting Hyperparameters: To maximize 

model performance, play around with various 

hyperparameters including learning rate, batch 

size, and dropout rates. 

Evaluation: After training is finished, test the 

trained ResNet50 model's generalization 

performance using the held-out test dataset. To 

measure the effectiveness of the model in 

identifying lung cancer, compute measures 

including accuracy, precision, recall, and F1-

score. 

Adjusting and Transforming Learning: 

ResNet50 may be fine-tuned to respond to lung 

scan features by retraining it on the lung cancer 

dataset with some of its older layers unfrozen. 

Transfer learning from pre-trained models can 

also be helpful, particularly if the lung cancer 

dataset is small. 
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Iterative Enhancement: Iterate through the 

training process, modifying it as necessary in 

light of domain knowledge and the outcomes of 

performance evaluations. 

 

COMPARISION: 

 

Aspect CNN ResNet-50 

Architecture Basic 

convolutional 

layers 

Deep 

residual 

networks 

Depth Variable 

(typically < 

20) 

50 layers 

Modules Standard 

convolutional 

layers 

Residual 

blocks 

(identity 

mappings) 

Accuracy Typically 

lower than 

ResNet 

(85.67%) 

Higher due 

to deeper 

architecture 

(92.54%) 

Loss Typically 

higher 

(0.5726) 

Lower due 

to better 

optimization 

(0.1212) 

Training 

time 

Faster Slower due 

to deeper 

architecture 

Batch size& 

Epochs 

16, 5 16,3 

 

RESULTS: 

 
The above figure is CNN output, here CNN is 

having 85.67% accuracy with loss of 0.5726 

and 5 epochs. The below figure shows the 

output of ResNet-50 having 92.54% accuracy 

with loss of 0.1212 and 3 epochs. By 

comparing both the architectures output we can 

say that ResNet-50 is having high accuracy and 

less loss than the CNN architecture. 
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CONCLUSION: 

A major development in medical imaging is the 

use of CNNs and the ResNet-50 architecture to 

diagnose lung cancer. We can reliably identify 

lung cancer from CT and X-ray images by 

fusing deep learning techniques with the 

robustness of ResNet-50. Because this research 

offers an automatic, dependable method for 

early cancer diagnosis, it has the potential to 

completely transform the field of radiology. 

Medical experts can make timely decisions 

with the use of CNN and ResNet-50 models, 

which accurately distinguish between 

malignant and non-malignant tissues. Using 

these tools results in less work for radiologists 

and more accurate diagnoses, which enhances 

patient care. To ensure their reliability across a 

range of patient demographics and imaging 

modalities, these models need to be 

continuously refined and validated. In 

summary, CNNs and ResNet-50 architecture 

together represent a significant advancement in 

early lung cancer detection that could lead to 

personalized and perhaps life-saving care. 

Ongoing research in this area is expected to 

lead to more improvements in medical imaging. 
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